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ABSTRACT

Estimating the magnetic field strength in the solar corona is crucial for understanding different phys-

ical processes happening over diverse spatio-temporal scales. However, the high temperatures and low

density of the solar corona make this task challenging. The coronal magnetic field is too weak to pro-

duce a measurable splitting of the spectral lines using the Zeeman effect, and high temperature causes

spectral lines to become weak and broad, making it difficult to detect the small Zeeman splitting.

Coronal magneto-seismology, which combines the theoretical and observed properties of magnetohy-

drodynamic (MHD) waves, can be used to infer the magnetic field strength of oscillating structures

in the solar corona, which are otherwise difficult to estimate. In this work, we use the Doppler veloc-

ity and density data obtained from the Coronal Multichannel Polarimeter (CoMP) on 2016 October

14 to obtain the global map of the coronal magnetic field using Bayesian inference. Two priors are

used for plasma density, viz Gaussian and uniform distributions. Bayesian inference provides us with

the probability distribution for the magnetic field strength at each location from 1.05 to 1.35 R⊙. A

comparison between the magnetic field obtained using simple inversion and Bayesian inference is also

drawn. We find that the values obtained using simple inversion do not always match the maximum

posterior estimates obtained using Bayesian inference. We find that the inferred values follow a power-

law function for the radial variation of the coronal magnetic field, with the power-law indices for simple

and Bayesian inversion being similar.

Keywords: The Sun (1693) — Magnetohydrodynamics (1964) — Solar coronal waves (1995) —

Bayesian Statistics (1900)

1. INTRODUCTION

Different layers of the solar atmosphere are coupled

by the magnetic field (Jess et al. 2016). Thus, the infor-

mation on the magnetic field is essential to understand-

ing many physical processes of the solar corona, such as

coronal heating. The magnetic field estimation of the

solar corona is challenging primarily for two reasons.

First, the magnetic field in the solar corona is three or-

ders of magnitude lower than in the solar photosphere.

This small magnetic field strength produces a minimal

Zeeman’s splitting of the spectral lines. Second, the

million-degree temperature of the solar corona broadens

the spectral lines. Altschuler & Newkirk (1969), and

Schatten et al. (1969) proposed the potential free source

surface (PFSS) model, an extrapolation method to de-

rive the coronal magnetic field strength. This model

was later refined by Wang & Sheeley (1992). Different

extrapolation methods: potential free (Lee et al. 1999),
linear force-free field and non-linear force-free field (Yan

& Sakurai 2000; Régnier 2007; Su et al. 2009; He et al.

2011; Xue et al. 2016; Huang et al. 2018) are widely

used to reconstruct the coronal magnetic field. These

models utilize the force-free condition by assuming that

the solar corona is current-free or that the currents are

not influencing the global magnetic field structure. Such

assumptions are not always valid. For instance, the so-

lar magnetic field is expected to be potential, where

the dominant force is the magnetic force with no mag-

netic helicity, and the field must be in the minimum

energy configuration. But, these conditions are vio-

lated in the active regions, where the magnetic fields

are highly sheared or twisted. Also, different extrapola-

tion methods could lead to different results (Lee et al.

1999; Régnier & Priest 2007).
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Coronal seismology is another method to estimate

the magnetic field in the solar corona (Roberts et al.

1983; Nakariakov & Verwichte 2005; Aschwanden 2006;

Banerjee et al. 2007; De Moortel & Nakariakov 2012).

Determination of physical parameters of solar corona

such as magnetic field was first suggested by Uchida

(1970); Rosenberg (1970); Roberts et al. (1984). How-

ever, this idea could not be put into practice until

the launch of the Solar and Heliospheric Observatory

(SoHO; Domingo et al. 1995) and the Transition Re-

gion and Coronal Explorer (TRACE; Handy et al. 1999).

These spacecraft localized and identified coronal loops,

prominences, standing and propagating magnetohydro-

dynamic (MHD) waves in the solar corona and the tran-

sition region (Nakariakov et al. 1999; Aschwanden et al.

1999). Soon after, the magnetic field strength in the

solar corona was estimated, using different ground- and

space-based instrumentation by e.g, Aschwanden et al.

(1999, 2002); Nakariakov (2000); Nakariakov & Ofman

(2001) using TRACE, Van Doorsselaere et al. (2008),

using Hinode (Kosugi et al. 2007), Aschwanden & Schri-

jver (2011); Sarkar et al. (2016); Jess et al. (2016), us-

ing the Solar Dynamic Observatory (SDO; Pesnell et al.

2012) and Tomczyk et al. (2007); Long et al. (2017);

Yang et al. (2020a), using the Coronal Multichannel Po-

larimeter (CoMP; Tomczyk et al. 2008).

These observations help us infer the average magni-

tude of the magnetic field in these structures. Extracting

the information of the physical parameters, such as mag-

netic field, from the observations is an inversion prob-

lem. To infer parameters from such inversion problems,

one has to deal with ill-posed mathematical problems

where the number of unknowns may exceed the number

of observables. Moreover, these observables cannot be

measured with high accuracy. For inversion problems,

the use of Bayesian analysis is increasing rapidly in solar

physics (Arregui & Ramos 2011; Arregui 2012; Arregui

et al. 2012, 2014; Arregui 2015; Scherrer & McKenzie

2017; Pascoe et al. 2017; Arregui 2018; Arregui et al.

2018; Arregui et al. 2019; Arregui & Goossens 2019;

Pascoe et al. 2020; Arregui 2021, 2022; Pascoe et al.

2022). The utilization of Bayesian inference in coronal

seismology is driven by the need for probabilistic con-

clusions due to the presence of uncertainties and limited

information available. This makes the Bayesian analysis

method a more appropriate approach compared to other

methods that provide a single numerical estimate.

The global map of magnetic field strength was recently

inferred using simple inversion by Yang et al. (2020a).

In this study, we inferred the global map of the coro-

nal magnetic field using Bayesian inference on the same

data set used by Yang et al. (2020a). A comparison

is also made between the magnetic field obtained using

Bayesian inference and the magnetic field obtained using

simple inversion. We also obtained the radial variation

of the coronal magnetic field using simple inversion and

Bayesian inference. Magnetic field variation along and

across the coronal loops have also been obtained and

it is found that the coronal magnetic field strength is

more inside the coronal loops as compared to the ambi-

ent medium. Additionally, the magnetic field strength

is found to be more near the loop footpoints than at the

loop apex.

This paper is structured as follows. Section 2 describes

the data used. The global map of the coronal magnetic

field using simple inversion is obtained in Section 3. The

magnetic field strength in the solar corona is estimated

using Bayesian inference, and the magnetic field’s radial

distribution is described in Section 4. Section 5 outlines

the summary.

2. INSTRUMENT AND DATA

The Coronal Multichannel Polarimeter (CoMP: Tom-

czyk et al. 2008) is a 20 cm aperture coronagraph

mounted at Mauna Loa Solar Observatory in Hawaii and

can perform spectroscopic observations at infrared wave-

lengths. Its spatial sampling is ∼4.35′′, and its field-of-

view (FOV) is about 1.05-1.35 R⊙ from the solar cen-

ter. This instrument measures the complete polarization

state of the Fe XIII coronal emission lines at 1074.7 and

1079.8 nm and He I chromospheric line at 1083.0 nm.

CoMP observations have measured periodic Doppler ve-

locity disturbances that have been interpreted as the

presence of transverse propagating MHD waves in the

corona (Tomczyk et al. 2007; Tomczyk &McIntosh 2009;

Morton et al. 2015, 2019).

De Pontieu et al. (2007); Goossens et al. (2009); Tian

et al. (2012); Long et al. (2017) identified these waves as

kink waves, which have Alfvénic nature. Doppler veloc-

ity dataset is used to determine the phase speed of kink

waves ubiquitously present in the solar corona (Tomczyk

et al. 2007; Tomczyk & McIntosh 2009; Morton et al.

2015, 2016). The Doppler velocity dataset is taken from

20:39 UT to 21:26 UT on 2016 October 14. (Animation

of Doppler velocity data is also available.) It should be

noted that no flare or Coronal Mass Ejection (CME)

happened during this time. Different structures present

during the observations are shown in Appendix C.

3. MAGNETIC FIELD ESTIMATION USING

SIMPLE INVERSION

To determine the phase speed, we consider 96 frames

corresponding to Fe XIII 1074.7 nm from 20:39 UT to

21:26 UT on 2016 October 14. A constant time ca-

dence of ∼30 s is ensured between these frames. The



3

-1000 -500 0 500 1000
Solar X [arcsec]

-1000

-500

0

500

1000

S
o
la

r 
Y

 [
ar

cs
ec

]

-1000 -500 0 500 1000

-1000

-500

0

500

1000

-1.0 -0.5 0.0 0.5 1.0

3.5 mHz Filtered Doppler Velocity [km s-1]

A

-1000 -500 0 500 1000
Solar X [arcsec]

-1000 -500 0 500 1000

-90 -45 0 45 90

Wave propagation angle [Degrees]

B

Figure 1. Images of the solar corona: (A) Map of Doppler velocity of the Fe XIII 1074.7 nm line at 20:39:09 UT on 2016
October 14. A 3.5 mHz Gaussian filter has been applied to the Doppler shift image sequence. An animated version of this
panel is available, featuring the 3.5 mHz Gaussian-filtered Doppler velocity from 20:39:08 UT to 21:26:38 UT on the same day.
The animation has a real-time duration of 10 seconds. (B) Map of the derived wave propagation direction. In all panels, the
brown dashed circle marks the edge of the solar disc (solar limb), and the black dashed circle indicates the inner boundary of
the CoMP FOV. The X and Y coordinates represent spatial positions in the east-west and south-north directions, respectively.

dataset obtained is usually associated with a certain de-

gree of uncertainty, i.e. noise. Dataset is first aligned

to remove the noise. Then a Gaussian filter correspond-

ing to 3.5 mHz (corresponding to 5-minute oscillations)

(Tomczyk et al. 2007; Tomczyk & McIntosh 2009; Mor-

ton et al. 2015, 2019) is applied to this Doppler velocity

data. A filtered Doppler velocity dataset is obtained as

shown in Figure 1(A). Furthermore, to reduce the ef-

fect of low signal-to-noise ratio in the data, only those

pixels are used which have a peak intensity of Fe XIII

1074.7 nm higher than 1ppm. The magnetic field in the

solar corona acts as the waveguide as these transverse

waves propagate along the magnetic field. Hence, the

wave propagation direction is also required. Wave prop-

agation direction is obtained using a cross-correlation

technique as explained in Yang et al. (2020b). Only

those pixels which have a cross-correlation value higher

than 0.5 are considered. The wave propagation direc-

tion map is shown in Figure 1(B). The wave propagation

direction is determined with respect to east-west orien-

tation. However, an inherent 180◦ ambiguity limits the

wave propagation direction map to a range between -90◦

and +90◦. The abrupt shifts in wave propagation angles

at specific pixels are a consequence of this 180◦ ambi-

guity, where wave angles near -90◦ and +90◦ essentially

indicate the same wave propagation directions.

After obtaining the wave propagation direction, the

phase speed of the prevailing transverse waves in the

FOV of CoMP is determined using the following proce-

dure. First, we define the track of 31 pixels along the

wave propagation direction. Following that, a space-

time diagram is constructed for each pixel on the track,

and then a 2D Fast-Fourier transform (FFT) is applied

to obtain the k-ω diagram. The k-ω diagram separates

the outward and inward propagating waves. The in-

verse FFT corresponding to the positive and negative

frequency of k-ω diagram is computed to obtain the

space-time diagrams corresponding to outward and in-

ward propagating waves. These space-time diagrams are

used to cross-correlate the time series at each pixel with

the rest of the pixels of the same track. The slope of

these distance-time plots gives the phase speed of the

waves at each pixel. In Figure 3, only those pixels with

a phase speed less than 700 km s−1 are shown. A few

pixels also have a phase speed of more than 700 km s−1.

These pixels are near the occulting disc or at the outer
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Figure 2. Density diagnostics (A and B): Maps of the electron density and the associated uncertainty. The circles are as in
Figure 1.
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Figure 3. Phase speed determination: (A and B) Maps of the derived phase speed and the associated uncertainty. The circles
are as in Figure 1.
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Figure 4. Coronal magnetic field: (A and B) Maps of plane-of-sky component of the coronal magnetic field and the associated
uncertainty. The circles are as in Figure 1. This coronal magnetic field map corresponds to the magnetic field obtained using
simple inversion. The number of pixels in this map, after applying all the filters used in evaluating the phase speed, is 40,306.

edge of the FOV and are thus generally associated with

large uncertainty.

To perform the coronal seismology, density estimates

are required. In this study, we use the Fe XIII line pairs

and CHIANTI (Dere et al. 1997) database. The inten-

sity ratio of Fe XIII lines at 1079.8 nm and 1074.7 nm is

obtained using CoMP data from 19:24 UT to 20:17 UT

corresponding to different heights in the CoMP FOV.

This intensity ratio obtained from CoMP is then com-

pared with the ratio of nearly the same wavelength range

of Fe XIII ion from the CHIANTI database. This period

is chosen because it is similar in time to the wave track-

ing period. CHIANTI Version 9.0 (Dere et al. 2019) is

used. Then, from the calibration curves obtained using

the CHIANTI database, electron density in the solar

corona can be obtained as in Figure 2.

The phase speed of the transverse propagating kink

waves and density data are used to estimate the mag-

netic field strength in the solar corona, first by simple

inversion and then by Bayesian inference. The phase

speed of the kink waves, ck, can be expressed as,

c2k =
Bi

2 +Bo
2

µo(ρi + ρo)
, (1)

where B is the magnetic field strength, ρ is the mass den-

sity, µo is the magnetic permeability of the free space,

and the subscripts i and o represent the correspond-

ing physical parameters inside and outside the coronal

structures, respectively. In coronal plasma, magnetic

pressure will dominate the thermal pressure because of

the low plasma β value, so Bi ∼ Bo. Moreover, in-

dividual flux tubes are likely to be unresolved at the

spatial resolution of CoMP, allowing us to take the den-

sity averaged inside and outside these flux tubes (⟨ρ⟩)
within each spatial pixel and estimate the magnetic field

strength via,

ck =
B√
µo⟨ρ⟩

. (2)

Substituting density data (⟨ρ⟩) and phase speed data ck
at each pixel, the plane of sky component of the mag-

netic field is estimated using Equation 2. The magnetic

field strength, obtained through a simple inversion pro-

cess, is presented in Figure 4. The estimated magnetic

field strength primarily ranges between 1 and 4 G, with

a corresponding uncertainty ranging from 0.1 to 0.5 G.

Also, it should be noted that for wave tracking, obser-

vations are taken from 20:39 UT to 21:26 UT, and for

density estimations, observations are taken from 19:24

UT to 20:17 UT. Due to the dynamic nature of the solar

corona, the measurement of physical parameters, such

as coronal density, is subject to both statistical and sys-

tematic uncertainties. To improve the magnetic field
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strength estimation, it is recommended to use an inver-

sion process that considers the uncertainties in the mea-

surements of physical parameters, such as coronal den-

sity. Bayesian inference provides a suitable approach for

this, as it incorporates the uncertainty in density when

determining the range of plausible magnetic field values.

4. MAGNETIC FIELD ESTIMATION USING

BAYESIAN INFERENCE

Bayesian analysis enables to perform parameter infer-

ence, model comparison, and model averaging applica-

tions to gain information about the magnetic field in

the solar corona. This approach to parameter inference

is based on the use of Bayes Theorem (Bayes & Price

1763),

p(θ|d,M) =
p(d|θ,M)p(θ|M)∫
p(d|θ,M)p(θ|M)dθ

. (3)

In this expression, p(θ|M) is the prior probability den-

sity for the parameter vector θ, and p(d|θ,M) is the

likelihood function. Both quantities are conditional on

the assumed model M. Their combination leads to the

posterior probability distribution p(θ|d,M), which con-

tains all the information that can be inferred from the

observed data and the assumed model.

It should be noted that Bayesian inference does not

provide point estimates for parameters but rather the

full posterior probability distribution function (PDF),

p(θ|d,M), which captures the entire range of plausible

values for the parameters. This is a significant advan-

tage over simple inversion.

In parameter inference, a parameterized model may

have multiple parameters, θ = θ1, ..., θi, ..., θN . The

marginal posterior distribution for a parameter of inter-

est, θi, can be obtained by integrating the full posterior
over the remaining nuisance parameters.

p(θi|d) =
∫

p(θ|d)dθ1...dθi−1, dθi+1, ..., dθN . (4)

This results in the marginal posterior distribution for

model parameter θi, which includes all the information

available in the prior knowledge and observed data. The

uncertainty from the nuisance parameters will also prop-

agate correctly to the one of interest.

Our model M is given by the theoretical prediction for

the kink speed in the extended wave-length approxima-

tion, given by Equation (2). This is a two-parameter

function, hence θ = {ρ,B} in our Bayesian inference

model. To estimate the probability of the magnetic field

strength using Bayesian inference, we first adopt prior

distributions for the two model parameters, ρ, B. For

the plasma density, we use measured density values and

associated uncertainties from Yang et al. (2020b) instead

of synthetic density values as used by Arregui & Asen-

sio Ramos (2011). Two different prior distributions are

used: a Gaussian prior and a uniform prior. The uni-

form prior assigns an equal probability for the density

in the range [µρi
−3σρi

, µρi
+3σρi

], where µρi
represents

the measured density value and σρi represents the un-

certainty for the ith pixel. The uniform prior probability

for density is described by the following equation:

p(ρ) =

 1
(µρi

+3σρi
)−(µρi

−3σρi
) µρi

− 3σρi
≤ ρ ≤ µρi

+ 3σρi

0 otherwise.

(5)

The Gaussian prior for the density at each pixel in the

FOV is given by:

p(ρ) =
1√

2πσρi

exp
−(ρ− µρi

)2

2σ2
ρi

. (6)

For the magnetic field strength, we restrict the possi-

ble range of variation to the one obtained using simple

inversion, i.e., [Bmin, Bmax] = [1,8] G, with Bmax only

present at a few pixels. For the magnetic field, we re-

strict the possible range of variation to the one obtained

using simple inversion. Within this range, we assign a

uniform prior probability for the magnetic field strength

described by the following equation:

p(B) =

 1
Bmax−Bmin

Bmin ≤ B ≤ Bmax

0 otherwise.
(7)

For our computations, we constructed a two-dimensional

grid over the parameter space with Nρ = 10, 000 and

NB = 71 points, which covers the ranges of considered

values for plasma density and magnetic field strength.

An additional magnetic field prior, known as the

gamma prior, is also considered. The probability dis-

tribution function of the gamma prior is given by Equa-

tion A1. Further details of how the parameters of this

distribution are evaluated can be found in Appendix A.

In the Bayesian framework, the data are fixed, and

the model parameters are unknown to which a prob-

ability value can be assigned. The general expression

of the likelihood function is the numerator of Equation

(3), p(d|θ,M), explicitly indicates that this function is

conditional on the model M, which is considered to be

true. It does not represent the likelihood of different

data realisations. Its purpose is to measure the discrep-

ancy between model predictions and observed data as

a function of the model parameters, taking as reference

the uncertainty of the data, thus assigning different lev-

els of likelihood to alternative parameter combinations.
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In our case, the phase velocity is forward modelled us-

ing model M in Equation (3) for different combinations

of the parameter values defined by those priors. These

theoretical predictions vp are compared to the observed

phase speed ck at each pixel, and the relative merit (like-

lihood) of each combination is assessed by the adoption

of a Gaussian likelihood function of the form

p(ck|B, ρ,M) =
1√

2πσck

exp
−(ck − vp(B, ρ))2

2σ2
ck

. (8)

Here, σck corresponds to the uncertainty in the phase

speed obtained earlier. This uncertainty is different at

each pixel and corresponds to the uncertainty obtained

while evaluating the phase speed ck. The joint posterior

probability of the magnetic field and density in the FOV,

given our model is true, is obtained as

p(B, ρ|ck) =
p(ck|B, ρ,M)p(B)p(ρ)∫ ∫
p(ck|B, ρ,M)p(B)p(ρ)dBdρ

, (9)

where p(ck|B, ρ,M) is the likelihood function and p(B),

p(ρ) are the prior probability distribution functions of

the magnetic field and density, respectively. We have

done forward modelling of phase speed with the mea-

sured phase speed and the corresponding error for the

likelihood function. All the posteriors in this analysis

are normalized.

The relative simplicity of the forward and inverse

problems (Equations 2 and 9), which involve a two-

dimensional parameter space and a one-dimensional ob-

servable space, makes feasible the computation of our

Bayesian posteriors using direct numerical evaluation

and integration over a grid of points in parameter space.

These are performed using routine IDL and Python

scripts. Arregui et al. (2019) have shown that this grid-

approximation method and a Markov chain Monte Carlo

(MCMC) sampling of the posterior give essentially the

same results to the solution of kink wave phase speed

inversion problem (see their Appendix A). In our study,

we have verified the good correspondence between the

direct integration and the MCMC solutions, described

in Appendix B.

Using a uniform prior on magnetic field (Equation 7)

and two different priors on density (Equation 5 and 6)

and the likelihood function (Equation 8), Equation 9

helps evaluate the joint posterior probability distribu-

tion of the magnetic field and density. The left and

middle panels of Figure 5 represent the joint probability

distribution of the magnetic field and density obtained

at one location using two different priors on density. The

shape of the inferred joint probability distribution dif-

fers for different priors on density. The use of a Gaussian

prior on density leads to a more constrained inference

because it provides more information to the inference

process. From the joint posteriors, our interest is in es-

timating the marginal probability distributions of the

magnetic field strength; this is done by integrating the

joint posterior probability distribution over the density

as follows. This marginalized distribution of the mag-

netic field is determined using an equation similar to the

Equation 4 as,

p(B|ck) =
∫

p(B, ρ|ck)dρ. (10)

The evaluation of the marginal probability distributions

of the magnetic field also incorporates the uncertainty in

density as it involves integrating the whole joint poste-

rior probability with respect to density. The rightmost

panel of Figure 5 represents the marginal probability

distribution of the magnetic field. For Gaussian prior

on density, the marginal probability distribution of the

magnetic field peaks where the joint probability distri-

bution of the magnetic field and density is maximum.

The magnetic field value for which the marginal prob-

ability distribution is maximum is the most probable

value of the magnetic field for that location.

Figure 6(A) represents the marginal posterior for the

magnetic field inferred at two other locations in the

FOV, using a uniform prior on the magnetic field and

two different priors on density. The vertical dash-dotted

and solid violet lines indicate the magnetic field estimate

and the associated uncertainty obtained using simple

inversion. Our results show that the simple inversion

point estimates and the Bayesian maximum a posteri-

ori estimates do not always coincide. The magnitude of

the discrepancy depends on the particular location and

the type of prior on density employed in the inference.

The difference is larger on location [-696.0,800.4] (bot-

tom panels) than on location [804.8, -643.8] (top panels).

The reason for this is that the relative uncertainty on

density at [-696.0,800.4] is 27% while at location [804.8,

-643.8] and [-1131.0, -208.8], the relative uncertainty in

density is 22% and 15%. The mismatch between the

simple and Bayesian estimates is larger when using a

uniform prior on density (right panels) than when a

Gaussian prior is employed (left panels). Here, again,

the use of a Gaussian prior is helping in obtaining a

more constrained inference result.

We have explored another option for the prior on mag-

netic field strength, with the use of a Gamma distribu-

tion. This has the advantage of being strictly positive

and with no upper boundary. A summary of inference

results obtained using this prior for the magnetic field

strength is presented in Appendix A. One comparison

between the marginal magnetic field distribution eval-

uated using a uniform prior on the magnetic field and
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Figure 5. Left and middle panels represent the joint probability distributions of magnetic field and density at the specified
location. For Gaussian prior on density [Left panel], it is maximum for density value for which the prior probability is also
maximum, but for a uniform prior on density. The right panel represents the marginal magnetic field obtained by integrating
the joint probability distributions with density.

gamma prior on the magnetic field is also made at lo-

cation [-1131, -208.8] in Figure 14. The violet lines are

as mentioned above. The royal blue curve corresponds

to the marginal magnetic field distribution obtained us-

ing a uniform prior on the magnetic field, whereas the

black curve corresponds to the gamma prior on the mag-

netic field for both density distributions. The marginal

magnetic field distribution at the other two locations

is shown in Figure 13. The area under the plots of

marginal magnetic field versus magnetic field will be

unity, for the pixels having higher values of the marginal

distribution of the magnetic field will result in giving the

more constrained plausible range of magnetic field and

vice versa. This can be seen from Figure 14 for the

uniform prior on the magnetic field, which has a more

constrained curve as compared to the other locations as

in Figure 14. Furthermore, one can easily check that the

magnetic field distribution obtained using gamma prior

on the magnetic field gives more constrained results than

that of a uniform prior on the magnetic field.

Further, we computed the marginal probability distri-

bution of the magnetic field in the whole FOV of CoMP.

For this, we normalise the marginal probability of the

magnetic field at each location with respect to the max-

imum value of the marginal probability obtained in the

whole FOV. The results are shown in Figure 7. Here, the

height of each bar represents the range of plausible val-

ues of the magnetic field for that location, and the colour

bar represents the colour corresponding to the marginal

probability of the most probable magnetic field at each

location. The larger the height of the bar, the more the

values of the magnetic field are plausible. Similar maps

using gamma prior on the magnetic field are shown in 15

in Appendix (A). Further, the convergence of the mag-

netic field is also shown by using Markov chain Monte

Carlo (refer Appendix B)

The simple inversion approach yields a single-valued

magnitude of the magnetic field at each pixel, along

with its associated uncertainty. On the other hand,

Bayesian inference produces a probability distribution

corresponding to each magnetic field value at each pixel.

Figure 8 shows the Bayesian analogue of the map in Fig-

ure 4A, representing now the maximum a posteriori es-

timates for the magnetic field strength, for the two con-

sidered priors in density. As explained above, the infer-

ence results have a dependence on the prior assumption

on density, because the uniform prior is less informative

that the Gaussian prior. These differences can be appre-

ciated at several pixels in the inference results displayed

in Figure 8.

The difference between the magnetic field obtained

through simple inversion and the most probable mag-

netic field obtained through Bayesian inference is illus-

trated in Figure 9. In most regions, the difference is close

to zero. However, the difference is more pronounced

near the occulter or at the edge of the FOV, where the

uncertainty in density or phase speed is large. It should

be noted that the difference is larger for the uniform

prior on density as compared to the Gaussian prior on

density. The most probable magnetic field obtained us-
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Figure 6. Marginal magnetic field: (A) Marginal magnetic field at two locations using Gaussian prior on density. (B)
Marginal magnetic field at the same locations using a uniform prior on density. The vertical dot-dash violet line corresponds
to the magnetic field at the same location using simple inversion, and the vertical solid violet line corresponds to the lower
and upper limits of the magnetic field. Phase speed and associated uncertainty at location (804.8,-693.8) ((-696,800.4)) is
(475 ± 49) km s−1((275 ± 4) km s−1), and density and associated uncertainty values are (1.98 ± 0.44) × 10−13 kgm−3((4.20 ±
1.16) × 10−13 kgm−3). These results in the magnetic field and associated uncertainty obtained using simple inversion as
(2.4± 0.4)G ((2.0± 0.3)G).

ing Gaussian prior on density is not very much different

from the magnetic field estimate obtained using simple

inversion.

The Bayesian inference results enable us to compare

the probability of a given value for the magnetic field

strength at different locations in the FOV. This is an

advantage with respect to the simple inversion result,

with which this comparison cannot be drawn. Figure 10

represents the marginal probability of magnetic field =

1.5 G at all the pixels in the field of view of CoMP. For

1.5 G, the magnetic field is more structured and concen-

trated at the flux tubes. Lower values of magnetic fields

are most probable at the outer edges of FOV, whereas

higher values of the magnetic field are most probable

near the inner edge of the FOV. One can also conclude

from the movies that the higher values of the magnetic

field are most probable in the west limb. From the ani-

mations, it is clear that the marginal distribution of the

magnetic field, when plotted in the whole FOV by vary-

ing the strength of the magnetic field, gives the region

where those magnetic field values are most probable.

A similar analysis was also performed with a different

range of density in uniform prior where density range

is [µρi
− σρi

, µρi
+ σρi

]. With this constrained prior in

density, the marginal distribution of the magnetic field

was also constrained. The most probable magnetic field
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Figure 7. [A] Marginal distribution of magnetic field ob-
tained using Gaussian prior density distribution and a uni-
form prior magnetic field distribution in the whole FOV of
CoMP. [B] Marginal magnetic field obtained using a uniform
prior density distribution and a uniform prior magnetic field
distribution in the whole FOV.

obtained using this density range was similar to the one

obtained using Gaussian prior on density. In Section 2,

it was noted that phase speeds exceeding 700 km s−1

were observed in a few pixels. To evaluate the impact of

these observations, the analysis was extended to include

phase speeds up to 2000 km s−1, resulting in a revised

maximum magnetic field strength of 21 G instead of

8 G as obtained through simple inversion. This new

magnetic field range, B ϵ [1,21] G, was then considered

to estimate the magnetic field strength using Bayesian

inference. The pixels having phase speed less than 700

km s−1 were found to yield the same results. The same

analysis was repeated for a different range of magnetic

field, B ϵ [1,25] G, to check if it has any impact; however,

again, similar results were obtained.

4.1. Radial variation of the coronal magnetic field

The radial variation of the coronal magnetic field ob-

tained using simple inversion and Bayesian inference is

shown in Figure 11. The region on the east limb repre-

sents the quiet Sun (QS) region, whereas the region on

the west limb represents the active region (AR). Pre-

vious investigations (Kumari et al. 2019; Yang et al.

2020a) have shown that the radial variation of the coro-

nal magnetic field follows a power-law function. The

power-law function (Arα) is fitted to each curve as

shown in Figure 11, and the power-law index (α) is ob-

tained. The power law index value for each prior on

density distribution in Bayesian inference and simple in-

version is almost the same.

4.2. Magnetic field along and across the coronal loops

Figure 12 displays the full FOV of CoMP in terms

of intensity. A spline fitting technique employing 100

spline points is used to obtain smooth arc coordinates

along the loops. Different loops at different locations

are analyzed, and it was found that the magnetic field

is maximum at the footpoints of the coronal loop. This

result was also expected from the radial variation of the

magnetic field. A Savitzky-Golay filter of 3rd polyno-

mial order and window size of 10 pixels is applied along

all the loops to smoothen out the variation along the dis-

tance further. The middle row of Figure 12 represents

the magnetic field variation along the coronal loop. It

should also be noted that the magnetic field variation in

going from one footpoint to the other in the same loop

is not smooth but rather, the magnetic field decreases

rapidly and then remains constant for some distance and

then increases rapidly. This trend can be appreciated in

almost all the selected loops. Here, the colour represents

the probability of the magnetic field. An attempt was

also made to obtain the magnetic field of coronal loops

close to the occulter. But, as evident from the radial

variation of the coronal magnetic fields, magnetic fields

do not vary much as one moves from footpoints to the

loop apex for very small coronal loops near the occulter

region.

Along the middle of the fitted arc on the coronal loop,

a perpendicular slit of 80 pixels is defined. The variation

of the magnetic field across this slit is obtained. The

distance in the bottom panel of Figure 12 corresponds

from inside to outside of the FOV. The magnetic field

is expected to increase as it encounters the coronal loop

and then decrease as one moves out of that coronal loop

and again increases as the slit passes through another

coronal loop. A similar trend can also be seen in the

bottom panel of Figure 12.
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Figure 8. Coronal magnetic field using Bayesian Inference: (A) Map of plane-of-sky component of the coronal magnetic field
obtained using Gaussian prior on density. (B) Map of the plane of sky component of the magnetic field obtained using a uniform
prior on density. The circles are as in Figure 1.
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Figure 9. Magnetic field obtained using Bayesian inference versus simple inversion: (A) Difference between the plane-of-sky
component of magnetic field obtained using Bayesian inference and simple inversion at each pixel in CoMP FOV using Gaussian
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Figure 10. Variation of marginal probability with magnetic field: Left and Right panel represent the different marginal
probability values of the magnetic field (= 1.5 G) at different pixels for Gaussian prior on density and uniform prior on density,
respectively. An animation of the variation of marginal probability values with the variation of the magnetic field is available.
The animation shows the changes from a magnetic field of 1.0 G to 8.0 G in increments of 0.1 G. The animation shows that the
lower magnetic field values are more probable in the outer FOV, while higher magnetic field values are more probable near the
inner edge of the FOV. The animation has a real-time duration of 5 seconds.

5. SUMMARY AND DISCUSSION

A global map of the coronal magnetic field was ob-

tained for the first time by Yang et al. (2020b), and we

have applied Bayesian analysis for the first time on the

whole global map using the density and associated un-

certainty values derived from CoMP observation. We

found that the magnetic field obtained using simple in-

version does not always match the most probable mag-

netic field obtained using Bayesian inference. We also

showed the impact of choosing two different density pri-

ors as well as two different magnetic field priors. The use

of Gaussian density priors leads to a better constrained

inference of magnetic field strength, because it provides

more information to the inference process, in compari-

son to a uniform density prior over a given range of val-

ues. This underscores the crucial significance of obtain-

ing precise density estimates. On the other hand, using

a gamma function prior for the magnetic field strength,

yields more tightly constrained inferences, although this

requires some prior knowledge to set the parameters of

the prior probability density. This underscores the cru-

cial significance of obtaining precise density estimates.

We have also obtained 3D maps of the global coronal

magnetic field, which gives the probability of occurrence

of a magnetic field value at each location in the plane of

the sky. We have shown the variation of the marginal

probability at each location with the varying magnetic

field. We also obtained the radial variation of the mag-

netic field using Bayesian inference and simple inversion.

The sharp decrease of the magnetic field with height in

AR compared to the QS region is seen in both Bayesian

and simple inversion. This result is consistent with Yang

et al. (2020a). We have also shown the magnetic field

variation along and across the coronal loops. We hope

this study will be beneficial to understanding the mag-

netic structure of multi-thermal loops by making use of

MHD simulations.

Bayesian inference helps us obtain not just a point

estimate of the magnetic field but gives a whole distri-

bution of magnetic field values along with their associ-

ated probabilities. Our study found that higher mag-

netic field values are most probable near the base of the

coronal loops, and the probability of a high magnetic

field decreases while moving outwards in the FOV. This

is also expected as the strength of the magnetic field

decreases at larger solar radii.

Bayesian inference has already been used for seismol-

ogy of coronal oscillations (Arregui & Asensio Ramos

2011; Arregui et al. 2019), but with assumptions on

the density estimation. In this work, we used densi-

ties derived from the observations of Fe XIII emission

line pairs.
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Figure 11. Radial profile of magnetic field: Top panel shows the plane of sky component of the magnetic field (same as in
Figure 8) with four regions marked in the east and west limb. (A), (B), (C) and (D) show the variation of average coronal
magnetic field strength as a function of radial distance from the solar centre for the marked regions.
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Figure 12. Intensity: Map of the edge enhanced intensity of the FOV at 20:39:09 UT on October 14 2016, along with selected
coronal loops and slits across which the variation of the magnetic field is obtained. Variation of coronal magnetic field: In
the bottom panels, the first row represents the variation of the coronal magnetic field along the 4 different coronal loops. The
bottom panels represent the variation of the coronal magnetic field across these loops.
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The Bayesian seismology techniques have helped infer

parameters in the solar corona and model comparison

methods. Bayesian takes care of uncertainty in the pa-

rameters’ values; this information is passed throughout

the analysis from the prior distribution to the posterior

and the marginal distributions. One can easily change

the prior distribution of density as well as the magnetic

field to obtain the more realistic values of the most prob-

able magnetic field. One can also update the value of

the magnetic field, density, and phase speed in the prior

distribution and likelihood functions, as the information

about these parameters keeps on updating with the ad-

vancement in observations, as mentioned in Arregui &

Asensio Ramos (2011). The reliability of the obtained

magnetic field distribution is based on the reliability

of the estimated density values. Using Bayesian infer-

ence for inversion in upcoming solar facilities such as the

Upgraded Coronal Multichannel Polarimeter (UCoMP)

and Daniel K. Inouye Solar Telescope (DKIST), we may

obtain the magnetic field values with more accuracy.
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APPENDIX

A. INFERENCE WITH A GAMMA PRIOR ON THE MAGNETIC FIELD STRENGTH

For completeness, we show here results on global maps of the coronal magnetic field, obtained with the use of a

Gamma distribution for the prior on magnetic field strength. The distribution is strictly positive and has no upper

boundary. A parametric form of this distribution can be expressed as:

p(B) =

βαxα−1e−βx

Γ(α) Bmin ≤ B ≤ Bmax

0 otherwise.
(A1)

Here, α and β represent the shape and rate parameters. The mean and coefficient of variance of the distribution is

given by α/β and α/β2, respectively. To determine the parameters of the distribution, we used information from the

results of the simple inversion. In particular, we took the magnetic field obtained from simple inversion as the mean

and the magnetic field’s uncertainty as the coefficient of variance in the distribution at each location.

We obtained the magnetic field with the gamma prior on the magnetic field and both uniform and Gaussian priors

on density. The marginal magnetic field distribution at each pixel for both density priors now exhibits a Gaussian

distribution, as depicted in Figure 13.

One comparison between the marginal magnetic field distribution evaluated using a uniform prior on the magnetic

field and gamma prior on the magnetic field is also made at location [-1131, -208.8] in Figure 14. The violet lines are

as mentioned above. The royal blue curve corresponds to the marginal magnetic field distribution obtained using a

uniform prior on the magnetic field, whereas the black curve corresponds to the gamma prior on the magnetic field for

both density distributions. It is clear from Figure 14 that the marginal magnetic field distribution is more constrained

when gamma prior on the magnetic field is used as compared to when uniform prior on the magnetic field is used.

The marginal probability distribution of the magnetic field, as obtained through a Gamma prior on the magnetic

field, demonstrates more tightly constrained values when compared to the results obtained with a uniform prior on

the magnetic field (Figure 6). Just as in the case of a uniform prior on the magnetic field (Figure 7), we have also



16

1 2 3 4
Magnetic field [G]

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

g
in

al
 p

ro
b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n
 o

f 
m

ag
n
et

ic
 f

ie
ld

Simple inversion

Gaussian prior on density

A

Gamma prior on B

[Solar X , Solar Y] = [804.8 , -643.8]

1 2 3 4
Magnetic field [G]

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

g
in

al
 p

ro
b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n
 o

f 
m

ag
n
et

ic
 f

ie
ld

Simple inversion

Uniform prior on density

B

Gamma prior on B

1 2 3 4
Magnetic field [G]

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

g
in

al
 p

ro
b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n
 o

f 
m

ag
n
et

ic
 f

ie
ld

Simple inversion

Gaussian prior on density

A

Gamma prior on B

[Solar X , Solar Y] = [-696.0 , 800.4]

1 2 3 4
Magnetic field [G]

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

g
in

al
 p

ro
b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n
 o

f 
m

ag
n
et

ic
 f

ie
ld

Simple inversion

Uniform prior on density

B

Gamma prior on B

Figure 13. Marginal magnetic field using gamma prior on magnetic field: (A) Marginal magnetic field at two locations using
Gaussian prior on density. (B) Marginal magnetic field at the same locations using a uniform prior on density. The vertical
dot-dash violet line corresponds to the magnetic field at the same location using simple inversion, and the vertical solid violet
line corresponds to the lower and upper limits of the magnetic field. Pixel location and other parameters like phase speed,
density, magnetic field and uncertainty associated with these parameters are the same as in Figure 6.

plotted the marginal probability of the magnetic field, using gamma prior on the magnetic field and both the density

distribution on density, in the whole field of view. These plots are shown in Figure 15. The height and colour of each

bar are as explained previously in Section 4. The joint probability of magnetic field and density for both the priors

on density and gamma prior on magnetic field is shown in Figure 16. Again, the joint probability is the maximum for

which the priors on density and magnetic field have a higher probability.

A comparison between the most probable magnetic field obtained using gamma prior on magnetic field for two

different density distributions and the magnetic field obtained using simple inversion is also made and depicted in Figure

17. This also represents that the difference is mainly near the occulter or at the edge of FOV for the abovementioned

reasons.

B. APPLICATION OF MCMC ON MARGINAL MAGNETIC FIELD

We also compared the results obtained using direct numerical integration (Bayesian inference) with Markov chain

Monte Carlo (MCMC) sampling for the posterior, making use of the emcee algorithm (Foreman-Mackey et al. 2013).

The application of the emcee algorithm is explained in Montes-Soĺıs & Arregui (2017) and Arregui et al. (2019). Since

there are only two parameters involved as theta = [B, ρ], thus, the number of dimensions in emcee is 2. We used
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Figure 14. Comparison of marginal probability distribution: (A) Marginal probability distribution of magnetic field at location
(-1131.0,208.8) using Gaussian prior on density. (B) Marginal magnetic field at the same location using a uniform prior on density.
The vertical solid and dot-dash lines are the same as in Figure 6. The black and royal blue curves correspond to the gamma
prior on the magnetic field and uniform prior on the magnetic field, respectively. Phase speed and associated uncertainty at this
location is is (408± 12) km s−1 and density and associated uncertainty values are (1.60± 0.24)× 10−13 kgm−3. These results in
the magnetic field and associated uncertainty obtained using simple inversion as (1.9± 0.2)G.
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Figure 15. [A] Marginal magnetic field distribution obtained using Gaussian prior density distribution and a gamma prior
magnetic field distribution in the whole FOV of CoMP. [B] Marginal distribution of magnetic field obtained using a uniform
prior density distribution and a gamma prior magnetic field distribution in the whole FOV of CoMP.

around 15 walkers with 50,000 steps in each walker for emcee algorithm. Out of which, we have used an initial 20%

of the iterations for the burn-in phase to avoid any outliers. The marginal posterior distribution of the magnetic field

results in the same distribution for two different density distributions when the gamma distribution is taken as the

prior distribution on the magnetic field. Further, one can check from Figure 18 that there is no effect of change in

the prior distribution of density on the marginal probability distribution of the magnetic field as mentioned in Arregui
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Figure 18. [Top panels] Marginal magnetic field distribution for gamma prior on magnetic field and Gaussian prior on density.
[Bottom panels] Marginal magnetic field distribution for gamma prior on magnetic field and uniform prior on density. Orange-
coloured Histograms are the results obtained using the emcee algorithm of MCMC, whereas the blue solid curve represents the
marginal magnetic field distribution obtained using Bayesian inference. The pixel locations are as in Figures 5 and 6. The
marginal probability distributions are not normalized for the sake of comparison with the histograms of samples obtained using
MCMC.
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Figure 19. [Top panels] Marginal magnetic field distribution for a uniform prior on magnetic field and Gaussian prior on
density. [Bottom panels] Marginal magnetic field distribution for a uniform prior on magnetic field and uniform prior on density.
Green-coloured Histograms are the results obtained using the emcee algorithm of MCMC, whereas the blue solid curve represents
the marginal magnetic field distribution obtained using Bayesian inference. The pixel locations are as in Figures 5 and 6. The
marginal probability distributions are not normalized for the sake of comparison with the histograms of samples obtained using
MCMC.



20

Figure 20. Notable coronal features in the CoMP FOV during observation.

et al. (2019). Also, the marginal probability distribution of the magnetic field is the same even if we consider two

different priors of the magnetic field (gamma and uniform), keeping the density distribution the same (Gaussian prior

on density). This can be seen from the top panels of Figures 18 and 19. We have compared the results with MCMC

only for the locations shown in Figures 5 and 6. The results obtained using MCMC and direct numerical integration

also match the case when uniform prior is considered for density and the magnetic field.

C. FEATURES IN FOV

Various structures, including coronal holes, active regions, and more, can be observed in the CoMP intensity images.

Coronal holes are notably present in polar regions and along the west limb. The locations of these various coronal

features are shown in Figure 20.
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Arregui, I., Montes-Soĺıs, M., & Asensio Ramos, A. 2019,

A&A, 625, A35, doi: 10.1051/0004-6361/201834324

Arregui, I., Oliver, R., & Ballester, J. 2018, Living Reviews

in Solar Physics, 15, doi: 10.1007/s41116-018-0012-6

Arregui, I., & Ramos, A. A. 2011, The Astrophysical

Journal, 740, 44, doi: 10.1088/0004-637x/740/1/44

http://doi.org/10.1007/BF00145734
http://doi.org/10.1007/978-3-642-30442-2_18
http://doi.org/10.1098/rsta.2014.0261
http://doi.org/10.1016/j.asr.2017.09.031
http://doi.org/10.3847/2041-8213/ac0d53
http://doi.org/10.3389/fspas.2022.826947
http://doi.org/10.1088/0004-637X/740/1/44
http://doi.org/10.1051/0004-6361/201833813
http://doi.org/10.1051/0004-6361/201834324
http://doi.org/10.1007/s41116-018-0012-6
http://doi.org/10.1088/0004-637x/740/1/44


21

Arregui, I., Ramos, A. A., & Dı́az, A. J. 2014, in Nature of

Prominences and their Role in Space Weather, ed.

B. Schmieder, J.-M. Malherbe, & S. T. Wu, Vol. 300,

393–394, doi: 10.1017/S1743921313011241

Aschwanden, M. J. 2006, Philosophical Transactions of the

Royal Society A: Mathematical, Physical and

Engineering Sciences, 364, 417

Aschwanden, M. J., de Pontieu, B., Schrijver, C. J., & Title,

A. M. 2002, SoPh, 206, 99, doi: 10.1023/A:1014916701283

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., &

Alexander, D. 1999, ApJ, 520, 880, doi: 10.1086/307502

Aschwanden, M. J., & Schrijver, C. J. 2011, ApJ, 736, 102,

doi: 10.1088/0004-637X/736/2/102
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Montes-Soĺıs, M., & Arregui, I. 2017, ApJ, 846, 89,

doi: 10.3847/1538-4357/aa84b7

Morton, R. J., Tomczyk, S., & Pinto, R. 2015, Nature

Communications, 6, 7813, doi: 10.1038/ncomms8813

Morton, R. J., Tomczyk, S., & Pinto, R. F. 2016, ApJ, 828,

89, doi: 10.3847/0004-637X/828/2/89

Morton, R. J., Weberg, M. J., & McLaughlin, J. A. 2019,

Nature Astronomy, 3, 223,

doi: 10.1038/s41550-018-0668-9

Nakariakov, V. M. 2000, AIP Conference Proceedings, 537,

264, doi: 10.1063/1.1324949

Nakariakov, V. M., & Ofman, L. 2001, A&A, 372, L53,

doi: 10.1051/0004-6361:20010607

Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B.,

& Davila, J. M. 1999, Science, 285, 862,

doi: 10.1126/science.285.5429.862

Nakariakov, V. M., & Verwichte, E. 2005, Living Reviews

in Solar Physics, 2, 3, doi: 10.12942/lrsp-2005-3

Pascoe, D. J., Anfinogentov, S., Nisticò, G., Goddard,
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